Factors affecting phage development and anti-phage defence systems in Staphylococcus aureus
DOI:
https://doi.org/10.47187/cssn.Vol13.Iss2.201Palabras clave:
Staphylococcus aureus, phage, anti-phage defense systems, phage therapyResumen
Staphylococcus aureus is one of the most common human pathogens worldwide. The emergence of antibiotic-resistant strains of S. aureus has prompted the development of alternative therapeutic approaches such as phage therapy. Recent clinical trials have proven the efficacy of phage therapy. However, the selection pressure has led to the emergence of phage-resistant phenotypes or novel bacterial anti-phage defence systems. In a recent study, through wide-scale screening and genome- wide association study (GWAS) techniques, six novel genes affecting bacterial growth and phage development were reported in S. aureus, but yet more studies are required to explain how exactly these genes affect phage development. Anti-phage defence systems, on the other hand, are not required for bacterial growth and target specifically incoming phage DNA. So far, in S. aureus only two such systems have been well characterised: clustered regularly interspaced short palindromic repeats (CRISPR-Cas) and restriction-modification (R-M) systems. Novel systems were recently discovered in E. coli and Bacilli species. Among these systems, homologues for Thoeris, Hachiman, Gabija and Lamassu have been found in certain strains of S. aureus. The knowledge of factors affecting phage infection will improve the design of phage therapies or the formulation of phage cocktails. Furthermore, drugs inhibiting those factors could be developed and implemented in phage adjunctive therapies. Here, we summarise recent advances regarding factors affecting phage development in S. aureus and anti-phage
defence systems that are either ubiquitous in S. aureus or are present only in certain strains.
Descargas
Citas
Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology. 2019;17(4):203-18.
Sakr A, Brégeon F, Mège JL, Rolain JM, Blin O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front Microbiol. 2018;9:2419.
Comeau AM, Hatfull GF, Krisch HM, Lindell D, Mann NH, Prangishvili D. Exploring the prokaryotic virosphere. Res Microbiol. 2008;159(5):306-13.
Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011;1(1):31-45.
Aksyuk AA, Rossmann MG. Bacteriophage assembly. Viruses. 2011;3(3):172-203.
Fokine A, Rossmann MG. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage. 2014;4(1):e28281.
Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A. Wall Teichoic Acid-Dependent Adsorption of Staphylococcal Siphovirus and Myovirus. Journal of Bacteriology. 2011;193(15):4006-9.
Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol. 2014;21:593-601.
Deghorain M, Van Melderen L. The Staphylococci phages family: an overview. Viruses. 2012;4(12):3316-35.
Francino MP. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. Front Microbiol. 2015;6:1543.
Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, et al. Clostridium difficile infection: review. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2019;38(7):1211-21.
Weber-Dabrowska B, Mulczyk M, Górski A. Bacteriophage therapy of bacterial infections: an update of our institute's experience. Arch Immunol Ther Exp (Warsz). 2000;48(6):547-51.
Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349-57.
Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence. 2014;5(1):226-35.
Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359(6379).
Li X, Koç C, Kühner P, Stierhof Y-D, Krismer B, Enright MC, et al. An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Scientific Reports. 2016;6(1):26455.
Gerlach D, Guo Y, De Castro C, Kim S-H, Schlatterer K, Xu F-F, et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature. 2018;563(7733):705-9.
Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nature Communications. 2013;4(1):2345.
Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, et al. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci U S A. 2012;109(46):18909-14.
Li X, Gerlach D, Du X, Larsen J, Stegger M, Kuhner P, et al. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep. 2015;5(17219).
Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun. 2013;4:2345.
Borysowski RMJ. Phage Therapy: Caister Academic Press; 2014.
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Science Advances. 2019;5(10):eaaw7414.
Lhuillier S, Gallopin M, Gilquin B, Brasilès S, Lancelot N, Letellier G, et al. Structure of bacteriophage SPP1 head-to-tail connection reveals mechanism for viral DNA gating. Proceedings of the National Academy of Sciences. 2009;106(21):8507-12.
Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in Bacteriophage Lambda Development. Annual Review of Genetics. 2005;39(1):409-29.
Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. Infection, Genetics and Evolution. 2014;21:593-601.
Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Studies on Escherichia coliHflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch. BMC Microbiology. 2011;11(1):34.
Kelley WL. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Molecular Microbiology. 2006;62(5):1228-38.
Galkin VE, Yu X, Bielnicki J, Ndjonka D, Bell CE, Egelman EH. Cleavage of bacteriophage lambda cI repressor involves the RecA C-terminal domain. J Mol Biol. 2009;385(3):779-87.
O'Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J Bacteriol. 2004;186(9):2862-71.
Rees PJ, Fry BA. The Replication of Bacteriophage K DNA in Staphylococcus aureus. Journal of General Virology. 1981;55(1):41-51.
Rees PJ, Fry BA. Structure and properties of the rapidly sedimenting replicating complex of staphylococcal phage K DNA. J Gen Virol. 1983;64(Pt 1):191-8.
Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, et al. Antimicrobial drug discovery through bacteriophage genomics. Nature Biotechnology. 2004;22(2):185-91.
Rees PJ, Fry BA. Structure and properties of the rapidly sedimenting replicating complex of staphylococcal phage K DNA. J Gen Virol. 1983;64 (Pt 1):191-8.
Rees PJ, Fry BA. The Replication of Bacteriophage K DNA in Staphylococcus aureus. Journal of General Virology. 1981;55:41-51.
Spilman MS, Damle PK, Dearborn AD, Rodenburg CM, Chang JR, Wall EA, et al. Assembly of bacteriophage 80α capsids in a Staphylococcus aureus expression system. Virology. 2012;434(2):242-50.
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. Sci Adv. 2019;5(10):eaaw7414.
Rao VB, Feiss M. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses. Annual Review of Virology. 2015;2(1):351-78.
Quiles-Puchalt N, Carpena N, Alonso JC, Novick RP, Marina A, Penadés JR. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proc Natl Acad Sci U S A. 2014;111(16):6016-21.
Chen J, Carpena N, Quiles-Puchalt N, Ram G, Novick RP, Penadés JR. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages. The ISME Journal. 2015;9(5):1260-3.
Ibarra-Chávez R, Hansen MF, Pinilla-Redondo R, Seed KD, Trivedi U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiology Reviews. 2021.
Takac M, Witte A, Blasi U. Functional analysis of the lysis genes of Staphylococcus aureus phage P68 in Escherichia coli. Microbiology (Reading, England). 2005;151(Pt 7):2331-42.
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nature Reviews Microbiology. 2010;8:317.
Kaneko J, Narita-Yamada S, Wakabayashi Y, Kamio Y. Identification of ORF636 in phage phiSLT carrying Panton-Valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of Staphylococcus aureus. J Bacteriol. 2009;191(14):4674-80.
Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages SA012 and SA039. Applied microbiology and biotechnology. 2018;102(20):8963-77.
Foulquier E, Pompeo F, Byrne D, Fierobe H-P, Galinier A. Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis. Scientific Reports. 2020;10(1):15938.
Kiser KB, Bhasin N, Deng L, Lee JC. Staphylococcus aureus cap5P encodes a UDP-N-acetylglucosamine 2-epimerase with functional redundancy. J Bacteriol. 1999;181(16):4818-24.
Moller AG, Winston K, Ji S, Wang J, Davis MNH, Solís-Lemus CR, et al. Genes Influencing Phage Host Range in Staphylococcus aureus on a Species-Wide Scale. mSphere. 2021;6(1):e01263-20.
Sekulic N, Shuvalova L, Spangenberg O, Konrad M, Lavie A. Structural characterization of the closed conformation of mouse guanylate kinase. J Biol Chem. 2002;277(33):30236-43.
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction—The Driving Force of Gene Expression and the Target for Drug Action. Frontiers in Molecular Biosciences. 2016;3(73).
Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio. 2013;4(1):e00537-12.
Devine KM. Activation of the PhoPR-Mediated Response to Phosphate Limitation Is Regulated by Wall Teichoic Acid Metabolism in Bacillus subtilis. Front Microbiol. 2018;9:2678.
Sacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, et al. Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses. 2018;10(6).
Lin LC, Chang SC, Ge MC, Liu TP, Lu JJ. Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infect Drug Resist. 2018;11:113-23.
Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother. 2004;48(12):4800-7.
Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147-71.
Sinha AK, Winther KS, Roghanian M, Gerdes K. Fatty acid starvation activates RelA by depleting lysine precursor pyruvate. Mol Microbiol. 2019;112(4):1339-49.
Fernández L, González S, Campelo AB, Martínez B, Rodríguez A, García P. Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus. Sci Rep. 2017;7:40965.
Moller AG, Lindsay JA, Read TD. Determinants of Phage Host Range in Staphylococcus Species. Appl Environ Microbiol. 2019;85(11).
Novick RP, Christie GE, Penadés JR. The phage-related chromosomal islands of Gram-positive bacteria. Nature Reviews Microbiology. 2010;8(8):541-51.
Tormo-Más MÁ, Mir I, Shrestha A, Tallent SM, Campoy S, Lasa Í, et al. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature. 2010;465(7299):779-82.
Ram G, Chen J, Kumar K, Ross HF, Ubeda C, Damle PK, et al. Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism. Proc Natl Acad Sci U S A. 2012;109(40):16300-5.
Enikeeva FN, Severinov KV, Gelfand MS. Restriction-modification systems and bacteriophage invasion: who wins?: J Theor Biol. 2010 Oct 21;266(4):550-9. Epub 2010 Jul 13 doi:10.1016/j.jtbi.2010.07.006.
Sadykov MR. Restriction–Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus. In: Bose JL, editor. The Genetic Manipulation of Staphylococci: Methods and Protocols. New York, NY: Springer New York; 2016. p. 9-23.
Waldron DE, Lindsay JA. Sau1: a Novel Lineage-Specific Type I Restriction-Modification System That Blocks Horizontal Gene Transfer into Staphylococcus aureus and between S. aureus Isolates of Different Lineages. Journal of Bacteriology. 2006;188(15):5578-85.
Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ, Projan SJ. Complete Bypass of Restriction Systems for Major Staphylococcus aureus Lineages. mBio. 2015;6(3):e00308-15.
van Aelst K, Tóth J, Ramanathan SP, Schwarz FW, Seidel R, Szczelkun MD. Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat. Proceedings of the National Academy of Sciences. 2010;107(20):9123-8.
Jones MJ, Donegan NP, Mikheyeva IV, Cheung AL. Improving transformation of Staphylococcus aureus belonging to the CC1, CC5 and CC8 clonal complexes. PLoS One. 2015;10(3):e0119487.
Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P. A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res. 2011;39(13):5597-610
.
Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci. 2016;371(1707).
Sternberg SH, Richter H, Charpentier E, Qimron U. Adaptation in CRISPR-Cas Systems. Mol Cell. 2016;61(6):797-808.
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules. 2020;10(11):1523.
Makarova KS, Koonin EV. Annotation and Classification of CRISPR-Cas Systems. Methods Mol Biol. 2015;1311:47-75.
Zhao X, Yu Z, Xu Z. Study the Features of 57 Confirmed CRISPR Loci in 38 Strains of Staphylococcus aureus. Frontiers in Microbiology. 2018;9(1591).
Ali Y, Koberg S, Heßner S, Sun X, Rabe B, Back A, et al. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Frontiers in Microbiology. 2014;5(98).
Depardieu F, Didier JP, Bernheim A, Sherlock A, Molina H, Duclos B, et al. A Eukaryotic-like Serine/Threonine Kinase Protects Staphylococci against Phages. Cell Host Microbe. 2016;20(4):471-81.
Koonin EV, Makarova KS, Wolf YI. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annual review of microbiology. 2017;71:233-61.
Chaudhary K. BacteRiophage EXclusion (BREX): A novel anti-phage mechanism in the arsenal of bacterial defense system. J Cell Physiol. 2018;233(2):771-3.
Sumby P, Smith MCM. Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Molecular Microbiology. 2002;44(2):489-500.
Ka D, Oh H, Park E, Kim J-H, Bae E. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD+ degradation. Nature Communications. 2020;11(1):2816.
Ofir G, Herbst E, Baroz M, Cohen D, Millman A, Doron S, et al. Antiviral activity of bacterial TIR domains via signaling molecules that trigger cell death. bioRxiv. 2021:2021.01.06.425286.
Cheng R, Huang F, Wu H, Lu X, Yan Y, Yu B, et al. A nucleotide-sensing endonuclease from the Gabija bacterial defense system. Nucleic Acids Research. 2021;49(9):5216-29.
Forsberg KJ, Malik HS. Microbial Genomics: The Expanding Universe of Bacterial Defense Systems. Current Biology. 2018;28(8):R361-R4.
Le Maréchal C, Hernandez D, Schrenzel J, Even S, Berkova N, Thiéry R, et al. Genome sequences of two Staphylococcus aureus ovine strains that induce severe (strain O11) and mild (strain O46) mastitis. J Bacteriol. 2011;193(9):2353-4.
Xue H, Lu H, Zhao X. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer. PLoS One. 2011;6(5):e20332.
Li M, Cheung GYC, Hu J, Wang D, Joo H-S, DeLeo FR, et al. Comparative Analysis of Virulence and Toxin Expression of Global Community-Associated Methicillin-Resistant Staphylococcus aureus Strains. The Journal of Infectious Diseases. 2010;202(12):1866-76.