The Silent Threat: Investigating Patterns of Bacterial Resistance in Ecuador Through a Bibliographic Lens.

Authors

  • Joselin Bonilla-Espinoza Escuela Superior Politécnica de Chimborazo (ESPOCH), Facultad de Salud Pública, Carrera Médica, Riobamba, Ecuador.
  • Gabriela Vaca Universidad Regional Autónoma de los Andes, Facultad de Ciencias Médicas, Carrera de Odontología. Ambato. Ecuador.
  • Marilyn Geovanna Mora-De Mora Escuela Superior Politécnica de Chimborazo (ESPOCH), Facultad de Ciencias Pecuarias, Carrera de Medicina Veterinaria.
  • Irvin Tubon Escuela Superior Politécnica de Chimborazo (ESPOCH), Facultad de Salud Pública, Carrera Médica, Riobamba, Ecuador.

DOI:

https://doi.org/10.47187/cssn.Vol15.IssEd.Esp.308

Keywords:

Bacterial resistance, genes, beta-lactamases, carbapenemases

Abstract

Introduction: Microbial resistance in Ecuador poses a major public health concern, substantially increasing related  publications. However, these publications are not widely used to recognize and implement surveillance and control programs. Therefore, this work aims to review the contributions of research conducted in Ecuador regarding resistance by microorganisms to various antimicrobial drugs. Methodology: A scientific literature search related to antibiotic, antifungal, and antituberculosis resistance was conducted by researchers in the country. Results: Twenty-eight publications were identified, highlighting contributions from Ecuadorian researchers that included data on the resistance of pathogens such as  Acinetobacter baumannii, Staphylococcus aureus, pneumonias, Bacteroides fragilis, and Escherichia coli. Discussion: Numerous resistance genes have been identified in these pathogens. The escalating cross-contamination of Escherichia coli in the environment presents a major concern for public health. Conclusion: Based on the research, the main microorganisms that carry resistance genes were identified, which have a direct implication in prolonged hospital stays and the increasing cross-contamination caused by environmental factors that directly impact the community.

Downloads

Download data is not yet available.

References

Bellón NS, Sánchez M, Palacín A. Resistencia Antimicrobiana, la Amenaza Oculta Antimicrobial Resistance , the Hidden Threat. 2018;418–20.

OMS. La resistencia a los antimicrobianos. WHO. 2017

Hipólito Unanue FI. Resistencia a los antibióticos. Diagnóstico [Internet]. 2018 [citado el 23 de abril de 2020];57(2):91–3. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibióticos

Guamán WM, Tamayo VR, Villacís JE, Reyes JA, Munoz OS, Torres JN, et al. Resistencia bacteriana de Escherichia coli uropatogénica en población nativa amerindia Kichwa de Ecuador. Vol. 42, Rev Fac Cien Med. 2017.

MSP. Plan-Nacional-para-la-prevención-y-control-de-la-resistencia-antimicrobiana_2019_compressed.pdf. Quito; 2019. p. 1–31.

OPS/OMS. (Pilar Ramón‐Pardo. OPS/OMS). Desarrollo de Planes Nacionales de Resistencia antimicrobiana; 2018 - OPS/OMS | Organización Panamericana de la Salud [Internet]. [citado el 25 de abril de 2020]. Disponible en: https://www.paho.org/es/documentos/pilar-ramon-pardo-opsoms-desarrollo-planes-nacionales-resistencia-antimicrobiana-2018.

Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl [Internet]. el 1 de marzo de 2015 [citado el 25 de abril de 2020];8(3):223–39. Disponible en: http://doi.wiley.com/10.1111/eva.12235

Tello A, Austin B, Telfer TC. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ Health Perspect. 2012 Aug;120(8):1100–6.

Fernández-Riveron, F; Lopez Hernandez, J; Ponce- Martínez LM Ma-BC. Resistencia Bacteriana. Rev Cuba Med Milit. 2003;32(1):44–8.

Van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203.

Tenover FC. Mechanisms of Antimicrobial Resistance in Bacteria. Am J Med. 2006 Jun;119(6 SUPPL. 1)

Vitus, Silago. Beta-lactam antibiotics and extended spectrum beta-lactamases. (2021). doi: 10.30574/GSCARR.2021.9.2.0200 Disponible en: http://saludpublica.mx/index.php/spm/article/view/5775/6410

Nayeem Ahmad, Ronni Mol Joji and Mohammad Shahid. Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review (2023). doi.org/10.3389/fcimb.2022.1065796. Disponible en: https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2022.1065796/full.

Lim KT, Hanifah YA, Yusof MYM, Thong KL. ErmA, ermC , tetM and tetK are essential for erythromycin and tetracycline resistance among methicillin-resistant Staphylococcus aureus strains isolated from a tertiary hospital in Malaysia. Indian J Med Microbiol. 2012 Apr;30(2):203–7.

R., Haider. Penicillin and the Antibiotics Revolution Global History. Asian Journal of Pharmaceutical Research, (2023). doi: 10.52711/2231-5691.2023.00011 Disponible en: https://typeset.io/papers/penicillin-and-the-antibiotics-revolution-global-history-33jng8km

Arco J. Farmacia Abierta Antibióticos: situación actual. Elsevier [Internet]. 2014; 28:29–33. Disponible en: https://www.elsevier.es/es-revista-farmacia-profesional-3-pdf-X0213932414516605

Henry, G., Grabowski. The Evolution of the Pharmaceutical Industry Over the Past 50 Years: A Personal Reflection. International Journal of The Economics of Business, (2011). doi: 10.1080/13571516.2011.584421. Disponible en: https://typeset.io/papers/the-evolution-of-the-pharmaceutical-industry-over-the-past-2sf26lpcgv

OMS. La falta de nuevos antibióticos pone en peligro los esfuerzos mundiales por contener las infecciones farmacorresistentes [Internet]. 2020 [cited 2020 Jun 13]. p. 1. Disponible en: https://www.who.int/es/news-room/detail/17-01-2020-17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-contain-drug-resistant-infections

INEC. Principales causas de morbilidad en Ecuador [Internet]. 2019 [cited 2020 Jun 13]. p. 1. Disponible en: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Sitios/inec_salud/index.html

OMS. La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos [Internet]. 2017 [cited 2020 Jun 13]. p. 1–4. Disponible en: https://www.who.int/es/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Ministerio de Salud Pública. Plan Nacional para la prevención y control de la resistencia antimicrobiana [Internet]. Quito; 2019 Aug [cited 2020 Jun 13]. Disponible en: https://aplicaciones.msp.gob.ec/salud/archivosdigitales/documentosDirecciones/dnn/archivos/AC-00011-2019 AGOSTO 07.PDF

MSP Ecuador. Reporte de datos de resistencia a los antimicrobianos en ecuador 2014-2018. In: Ministerio de Salud Pública [Internet]. 2018. p. 10. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/08/gaceta_ram2018.pdf

Zurita J, Parra H, Gestal MC, McDermott J, Barba P. First case of NDM-1-producing Providencia rettgeri in Ecuador. J Glob Antimicrob Resist [Internet]. 2015;3(4):302–3. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27842879/

Espinoza C, Cando V, Acosta L. Resistencia antimicrobiana de enterobacterias y uso de antibióticos en pacientes de UCI clínica Dame 2014. Polo del Conocimiento Científico [Internet]. 2019 Sep 9 [cited 2020 Jun 13];4(9):2. Disponible en: https://polodelconocimiento.com/ojs/index.php/es/article/view/1379/html

Ross J, Larco D, Colon O, Coalson J, Gaus D, Katherine T, et al. Evolución de la Resistencia a los antibióticos en una zona rural de Ecuador. Pract Fam Rural [Internet]. 2020;5(2477–9164):35–45. Disponible en: https://doi.org/10.23936/pfr.v5i1.144

Senok A, Garaween G, Raji A, Khubnani H, Sing GK, Shibl A. Genetic relatedness of clinical and environmental acinetobacter baumannii isolates from an intensive care unit outbreak. J Infect Dev Ctries. 2015 Jul 4;9(6):665–9.

Ye D, Shan J, Huang Y, Li J, Li C, Liu X, et al. A gloves-associated outbreak of imipenem-resistant Acinetobacter baumannii in an intensive care unit in Guangdong, China. BMC Infect Dis. 2015 Dec 12;15(1).

Aguirre-Avalos G, Mijangos-Méndez JC, Amaya-Tapia G. Bacteriemia por Acinetobacter baumannii TEMAS DE ACTUALIDAD. Rev Med Inst Mex Seguro Soc. 2010;48(6):625–34

Héritier C, Poirel L, Fournier PE, Claverie JM, Raoult D, Nordmann P. Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob Agents Chemother. 2005 Oct;49(10):4174–9.

Lopes BS, Amyes SGB. Role of ISAba1 and ISAba125 in governing the expression of bla ADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins. J Med Microbiol. 2012 Aug;61(8):1103–8.

Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Vol. 35, International Journal of Antimicrobial Agents. Int J Antimicrob Agents; 2010. p. 219–26.

Metan G, Sariguzel F, Sumerkan B. Factors influencing survival in patients with multi-drug-resistant Acinetobacter bacteraemia. Eur J Intern Med. 2009 Sep;20(5):540–4.

Gestal MC, Zurita J, Gualpa G, González C, Miño AP. Early detection and control of an acinetobacter baumannii multi-resistant outbreak in a hospital in Quito, Ecuador. J Infect Dev Ctries. 2016;10(12):1294–8.

Rodríguez CH, Balderrama Yarhui N, Nastro M, Nuñez Quezada T, Castro Cañarte G, Ventura RM, et al. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in South America. J Med Microbiol. 2016;65(10):1088–91.

Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-β-lactamase gene, bla NDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009 Dec;53(12):5046–54.

Villacís JE, Bovera M, Romero-Alvarez D, Cornejo F, Albán V, Trueba G, et al. NDM-1 carbapenemase in Acinetobacter baumannii sequence type 32 in Ecuador. New Microbes New Infect [Internet]. 2019; 29:100526. Disponible en: https://doi.org/10.1016/j.nmni.2019.100526

CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. 2018 [cited 2020 May 31]; Disponible en: www.clsi.org.

Gonzàlez-Martin J. Microbiología de la tuberculosis. Semin la Fund Esp Reumatol. 2014;15(1):25–33. Pleiomorphism in Mycobacterium. Adv Appl Microbiol. 1 de enero de 2012;80:81-112. Disponible en: https://typeset.io/papers/pleiomorphism-in-mycobacterium-4ufa6y26no?citations_has_pdf=true.

Bo H, Moure UAE, Yang Y, Pan J, Li L, Wang M, et al. Mycobacterium tuberculosis macrophage interaction: Molecular updates. Front Cell Infect Microbiol. 2023;13.

Rahlwes KC, Dias BRS, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Taylor & Francis [Internet]. 2022 [cited 2024 Jul 28];14(1). Available from: https://www.tandfonline.com/doi/abs/10.1080/21505594.2022.2150449

Fajardo A, Martínez-Martín N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, et al. The Neglected Intrinsic Resistome of Bacterial Pathogens. Falagas M, editor. PLoS One [Internet]. 2008 Feb 20 [cited 2020 Jun 7];3(2):e1619. Disponible en: https://dx.plos.org/10.1371/journal.pone.0001619

Pana M. Antibiotic Resistant Bacteria - A Continuous Challenge in the New Millennium. Antibiotic Resistant Bacteria - A Continuous Challenge in the New Millennium. InTech; 2012.

Robert, de, Wijk. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, (2022). doi: 10.3389/fcimb.2022.997283. Disponible en: http://kanamycin-and-ofloxacin-activate-the-intrinsic-resistance-to-23 h6

Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H. Mycobacterial outer membranes: in search of proteins. Vol. 18, Trends in Microbiology. Trends Microbiol; 2010. p. 109–16.

Madsen CT, Jakobsen L, Buriánková K, Doucet-Populaire F, Pernodet JL, Douthwaite S. Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J Biol Chem. 2005 Nov 25;280(47):38942–7.

Toungoussova OS, Mariandyshev A, Bjune G, Sandven P, Caugant DA. Molecular epidemiology and drug resistance of Mycobacterium tuberculosis isolates in the Archangel prison in Russia: predominance of the W-Beijing clone family. Clin Infect Dis [Internet]. 2003 Sep 1 [cited 2020 Jun 7];37(5):665–72. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12942398

Ghebremichael S, Groenheit R, Pennhag A, Koivula T, Andersson E, Bruchfeld J, et al. Drug resistant Mycobacterium tuberculosis of the Beijing genotype does not spread in Sweden. PLoS One [Internet]. 2010 May 28 [cited 2020 Jun 7];5(5): e10893. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/20531942

Gómez-tangarife VJ, Gómez-restrepo AJ, Robledo-restrepo J, Hernández-sarmiento JM. Resistencia a Medicamentos en. 2018;20(4):491–7.

Franco-Sotomayor G, Garzon-Chavez D, Leon-Benitez M, De Waard JH, Garcia-Bereguiain MA. A First insight into the katg and rpob gene mutations of multidrug-resistant mycobacterium tuberculosis strains from Ecuador. Microb Drug Resist. 2018;00(00):4–7.

Feuerriegel S, Oberhauser B, George AG, Dafae F, Richter E, Rüsch-Gerdes S, et al. Sequence analysis for detection of first-line drug resistance in Mycobacterium tuberculosis strains from a high-incidence setting. BMC Microbiol. 2012;12.

Romay Z, Arráiz N, Fuenmayor A, Ramírez C, Rojas L, Paris R. Detección de la mutación S315T en el gen katg como estrategia para identificación de mycobacterium tuberculosis resistente a isoniacida en un laboratorio de referencia. Rev Chil Infectol. 2012 Dec;29(6):607–13

Garzon-Chavez D, Zurita J, Mora-Pinargote C, Franco-Sotomayor G, Leon-Benitez M, Granda-Pardo JC, et al. Prevalence, Drug Resistance, and Genotypic Diversity of the Mycobacterium tuberculosis Beijing Family in Ecuador. Microb Drug Resist. 2019;25(6):931–7.

Gnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach. In: Frontiers in Staphylococcus aureus [Internet]. InTech; 2017 [cited 2020 Jun 20]. Disponible en: https://www.intechopen.com/books/frontiers-in-i-staphylococcus-aureus-i-/staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-

Aguayo-Reyes A, Quezada-Aguiluz M, Mella S, Riedel G, Opazo-Capurro A, Bello-Toledo H, et al. Bases moleculares de la resistencia a meticilina en Staphylococcus aureus. Revista chilena de infectología [Internet]. 2018 [cited 2024 Jul 28];35(1):7–14. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182018000100007&lng=es&nrm=iso&tlng=es

Frick MA, Moraga-Llop FA, Bartolom R, Larrosa N, Campins M, Roman Y, et al. Infecciones por Staphylococcus aureus resistente a meticilina adquirido en la comunidad en niños. Enferm Infecc Microbiol Clin. 2010 Dec 1;28(10):675–9.

Hilda, Akbariyeh., Mohammad, Reza, Nahaei., Alka, Hasani., Ali, Pormohammad. Intrinsic and Acquired Methicillin-Resistance Detection in Staphylococcus aureus and Its Relevance in Therapeutics. Archives of Pediatric Infectious Diseases, (2016). doi: 10.5812/PEDINFECT.39185.Disponible en : https://brieflands.com/articles/apid-20328

Armini, Syamsidi., Nuur, Aanisah., Reyhan, Fiqram., Imanuel, Al, Jultri. Primer Design and Analysis for Detection of mecA gene. Journal of Tropical Pharmacy and Chemistry, (2021). doi: 10.25026/JTPC.V5I3.297 Disponible en: https://jtpc.farmasi.unmul.ac.id/index.php/jtpc/article/view/297

Loriga WH, Padrón Álvarez JE, Pérez A, González Díaz J, Liudmila I, Mayea R, et al. Staphylococcus aureus resistente a meticilina. Rev Cubana Med Trop [Internet]. 2018 [cited 2024 Jul 28];70(2):1–9. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602018000200011&lng=es&nrm=iso&tlng=es

De SE, Familiar P. Vista de Evolución de la Resistencia a los antibióticos en una zona rural de Ecuador | Práctica Familiar Rural. 2020 [cited 2020 Jun 20];5(1):29–39. Disponible en: https://practicafamiliarrural.org/index.php/pfr/article/view/144/177

Navon-venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae : a major worldwide source and shuttle for antibiotic resistance. Fed Eur Microbiol Soc [Internet]. 2017;(October 2016):252–75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28521338/

Valdés D, Sosa J, Sosa R. Klebsiella pneumoniae, un patógeno de alta prioridad para la fabricaciòn de nuevos antibióticos. Scielo [Internet]. 2018;40:50–67. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1684-18242018000400033

Paño Pardo JR, Serrano Villar S, Ramos Ramos JC, Pintado V. Infections caused by carbapenemase-producing Enterobacteriaceae: risk factors, clinical features and prognosis. Enferm Infecc Microbiol Clin [Internet]. 2018 Dec [cited 2020 Jun 27];32 Suppl 4:41–3. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25542051

Sara, N, Aziz., Mohammed, F., Al, Marjani. Investigation of Bacterial Persistence and Filaments Formation in Clinical Klebsiella pneumoniae. ARO. The Scientific Journal of Koya University, (2022). doi: 10.14500/aro.10895 Disponible en: https://eprints.koyauniversity.org/336/1/ARO.10895-VOL10.NO2.2022.ISSUE19-PP82-86.pdf

Paciel DD, Seija V, Prieto J, Vignoli R, Medina J, Savio E. Enterobacterias productoras de KPC (Klebsiella pneumoniae carbapenemasa). 2011;2011.

Vera A, Barría C, Carrasco S, Domínguez M. KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias. Scielo [Internet]. 2017;34:40–5. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182017000500476

Montúfar-Andrade FE, Mesa-Navas M, Aguilar-Londoño C, Saldarriaga-Acevedo C, Quiroga-Echeverr A, Builes-Montaño CE, et al. Experiencia clínica con infecciones causadas por Klebsiella pneumoniae productora de carbapenemasa, en una institución de enseñanza universitaria en Medellín, Colombia. Infectio. 2016;20(1):17–24.

Muñoz-cuevas C, Pitera JG, Carmona PA, Daniel H, Ortega P, Ortiz CR. productora de CTX-M-15 multirresistente. Impacto de las medidas para controlar el brote. 2018;31(3):237–46.

Chen L, Todd R, Kiehlbauch J, Walters M, Kallen A. Pan-resistant New Delhi metallo-beta- lactamase-producing Klebsiella pneumoniae — Washoe County, Nevada, 2016. Morb Mortal Wkly Rep. 2017;66(1):33.

Erturk-Hasdemir D, Kasper DL. Finding a needle in a haystack: Bacteroides fragilis polysaccharide a as the archetypical symbiosis factor. Ann N Y Acad Sci. 2018;1417(1):116–29.

Tan H, Zhao J, Zhang H, Zhai Q, Wei C. Gram-Negative Bacteria - Bacteroides fragilis ; Recent Findings from Jiangnan University Provides New Insights into Bacteroides fragilis ( Novel Strains of Bacteroides Fragilis and Bacteroides Ovatus Alleviate the Lps-induced Inflammation In Mice ). Elsevier [Internet]. 2019;1–3. Disponible en: https://search.proquest.com/sessionexpired?accountid=36757

Akhi MT, Ghotaslou R, Alizadeh N, Yekani M, Beheshtirouy S, Asgharzadeh M, et al. nim gene-independent metronidazole-resistant Bacteroides fragilis in surgical site infections. GMS Hyg Infect Control [Internet]. 2017 May 14 [cited 2020 Jul 5]; 12:150–5. Disponible en: https://www.egms.de/static/en/journals/dgkh/2017-12/dgkh000298.shtml

Ghotaslou R, Bannazadeh Baghi H, Alizadeh N, Yekani M, Arbabi S, Memar MY. Mechanisms of Bacteroides fragilis resistance to metronidazole. Infect Genet Evol [Internet]. 2018;64(April 2017):156–63. Disponible en: https://doi.org/10.1016/j.meegid.2018.06.020

Ferløv-Schwensen SA, Sydenham TV, Hansen KCM, Hoegh SV, Justesen US. Prevalence of antimicrobial resistance and the cfiA resistance gene in Danish Bacteroides fragilis group isolates since 1973. Int J Antimicrob Agents [Internet]. 2017 Oct 1 [cited 2020 Jul 6];50(4):552–6. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S092485791730198X

Ogane K, Tarumoto N, Kodana M, Onodera A, Imai K, Sakai J, et al. Antimicrobial susceptibility and prevalence of resistance genes in Bacteroides fragilis isolated from blood culture bottles in two tertiary care hospitals in Japan. Anaerobe [Internet]. 2020;64:102215. Disponible en: https://doi.org/10.1016/j.anaerobe.2020.102215

Zurita J, Sevillano G, Paz y Miño A, Flores F, Overa M. Draft Genome Sequence of a Metronidazole-Resistant Bacteroides fragilis Strain Isolated in Ecuador. Am Soc Microbiol [Internet]. 2019;8(49):1–2. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31806742/

Vij R, Cordero RJB, Casadevall A. The Buoyancy of Cryptococcus neoformans Is Affected by Capsule Size. mSphere. 2018;3(6):1–13.

Tello M, Bejar V, Guti´rrz E. Criptococosis Criptococosis. Cent Food Secur Public Heal. 2013;(January).

Smith LM, Dixon EF, May RC. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell Microbiol. 2015;17(5):702–13.

Casadevall A, Coelho C, Cordero RJB, Dragotakes Q, Jung E, Vij R, et al. The capsule of Cryptococcus neoformans. Virulence. 2019;10(1):822–31.

Bosco-Borgeat ME, Mazza M, Taverna CG, Córdoba S, Murisengo OA, Vivot W, et al. Sustitución aminoacídica en la enzima lanosterol 14 α-demetilasa de Cryptococcus neoformans involucrada en la resistencia al fluconazol de aislamientos clínicos. Rev Argent Microbiol [Internet]. 2016;48(2):137–42. Disponible en: http://dx.doi.org/10.1016/j.ram.2016.03.003

Agudelo CA, Muñoz C, Ramírez A, Tobón AM, de Bedout Bact C, Cano LE, et al. Response to therapy in patients with cryptococcosis and AIDS: Association with in vitro susceptibility to fluconazole. Rev Iberoam Micol. 2015;32(4):214–20.

Sánchez S, Zambrano D, García M, Bedoya C, Fernández C, Illnait-Zaragozí MT. Caracterización molecular de Cryptococcus neoformans aislados de pacientes con VIH. Guayaquil, Ecuador. Biomedica. 2017;37(3):1–20.

Canata M, Navarro R, Velázquez G, Rivelli S, Rodríguez F, Céspedes A, et al. Caracterización molecular de factores de virulencia de aislados Escherichia coli obtenidas de heces de niños con gastoenteritis del Hospital Central de Instituto de Previsión Social en el 2012. Pediatría (Asunción). 2016;43(1):12–6.

Garrido D, Garrido S, Gutiérrez M, Calvopiña L, Harrison AS, Fuseau M, et al. Clinical characterization and antimicrobial resistance of Escherichia coli in pediatric patients with urinary tract infection at a third level hospital of Quito, Ecuador. Boletin Médico del Hospital Infantil de Mexico. 2017;74(4):265–71.

Zurita J, Solís MB, Ortega-Paredes D, Barba P, Paz y Miño A, Sevillano G. High prevalence of B2-ST131 clonal group among extended-spectrum β-lactamase-producing Escherichia coli isolated from bloodstream infections in Quito, Ecuador. Journal of Global Antimicrobial Resistance. 2019; 19:216–21.

Salinas L, Cárdenas P, Johnson TJ, Vasco K, Graham J, Trueba G. Diverse commensal E. coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semi-rural community in Ecuador. bioRxiv. 2019;(May):1–10.

Published

2024-09-20

How to Cite

Bonilla-Espinoza, J., Vaca, G., Mora-De Mora, M. G., & Tubon, I. (2024). The Silent Threat: Investigating Patterns of Bacterial Resistance in Ecuador Through a Bibliographic Lens. LA CIENCIA AL SERVICIO DE LA SALUD Y NUTRICIÓN, 15(Ed. Esp.), C_104–118. https://doi.org/10.47187/cssn.Vol15.IssEd.Esp.308

Issue

Section

Revisiones bibliográficas