Obtención de nanopartículas de plata soportadas en membrana de cabuya (Furcraea andina) y su acción antimicrobiana frente a Staphylococcus aureus.

Autores/as

  • Mayra Alexandra Logroño Veloz Carrera de Nutrición y Dietética, Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador. https://orcid.org/0000-0003-4792-6065
  • Samay Anabell Asubadin Espin 2. Carrera de Ingeniería Biomédica, Korea University, Seoul, Corea del Sur. https://orcid.org/0000-0002-4932-9988
  • Andrea Samantha Espín Logroño Carrera de Física, Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador https://orcid.org/0000-0002-9993-2267
  • Alexis Fernando Espín Logroño Carrera Trabajo Social, Facultad Ciencias Sociales, Universidad Estatal de Milagro, Milagro, Ecuador. https://orcid.org/0000-0002-3421-3480

DOI:

https://doi.org/10.47187/cssn.Vol14.Iss1.210

Palabras clave:

Nanopartículas de plata, química verde, nanobio-compuesto, antibacteriano

Resumen

Introducción. El progreso de la nanotecnología en los últimos años incluye las ciencias de la salud y la aplicación de la química verde. Objetivo. Desarrollar una membrana de Furcraea andina, cubierta con nanopartículas de plata usando como agente reductor cáscara de Citrus reticulata y analizar la actividad antimicrobiana sobre Staphylococcus aureus.  Metodología. Se efectuó la síntesis in situ por método de química húmeda usando como agente reductor extractos de cáscara de mandarina variedad común y King y se evaluó los niveles de concentración, temperatura y tiempos de inmersión de las fibras de cabuya. Resultados. Los coloides se caracterizaron por espectroscopia UV- visible proporcionando un rango promedio de longitud de onda entre 430 a 450 nm. La concentración óptima de reactivo precursor fue de 0.0025 M Ag NOy como agente reductor 5% de extracto acuoso de cáscara de mandarina variedad común y 3% de variedad King. La caracterización de la superficie se efectúo mediante microscopia SEM, EDX y FT-IR. Conclusión. El proceso permitió obtener un material con nanopartículas de plata que exhiben actividad antimicrobiana con mediana sensibilidad frente a Staphylococcus aureus.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol [Internet]. 2015;305(1):85–95. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25466205

Bruna T, Maldonado-Bravo F, Jara P CN. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci [Internet]. 2021;22(13):7202. Available from: doi:https://doi.org/10.3390/ijms22137202

Alghoraibi, I., & Zein R. SILVER NANOPARTICLES: ADVANCES IN RESEARCH AND APPLICATIONS IS APPROACHING. Nanotechnol Res J [Internet]. 2017;10(1):83–114. Available from: https://www.proquest.com/scholarly-journals/silver-nanoparticles-advances-research/docview/2439638545/se-2?accountid=14558

Crisan, C. M., Mocan, T., Manolea, M., Lasca, L. I., Tăbăran, F.-A., & Mocan L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Appl Sci [Internet]. 2021;11(3):1120. Available from: https://doi.org/10.3390/app11031120

Dakal, T. C., Kumar, A., Majumdar, R., & Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol [Internet]. 2016;7(1831). Available from: https://doi.org/10.3389/fmicb.2016.01831

Cardeño Calle L, Londoño ME. Síntesis verde de nanopartículas de plata mediante el uso del ajo (Allium sativum). Rev Soluciones Postgrado. 2014 Jun 30;6(12):129–40.

Oroz MM. Nanopartículas de plata: métodos de síntesis en disolución y propiedades bactericidas - Dialnet. An la Real Soc Española Química [Internet]. 2009 [cited 2020 Feb 21];(1):33–41. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=2931286

Patricia Betancur Henao C, Hernández Montes V, Buitrago Sierra R. Nanopartículas para materiales antibacterianos y aplicaciones del dióxido de titanio Nanoparticles for antibacterial materials and titanium dioxide applications. Rev Cuba Investig Biomédicas [Internet]. 2016 [cited 2020 Feb 21];35(4):387–402. Available from: http://scielo.sld.cu

Oksman K, Mathew AP, Bondeson D, Kvien I. Manufacturingprocess of cellulose whiskers/polylactic acid nanocomposites. Com-posites Sci Technol. 2006;66:2776–2784.

Ovalle SA, Blanco-Tirado C, Combariza MY. In situ synthesis of silver nanoparticles on fique fibers | Síntese in situ de nanopartículas de prata em fibras de fique | Síntesis in situ de nanopartículas de plata sobre fibras de fique. Rev Colomb Quim [Internet]. 2013;42(1):30–7. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84914171590&partnerID=MN8TOARS

UTN-FICA-EITEX. Cabuya una visión del futuro textil [Internet]. [cited 2020 Feb 21]. Available from: http://repositorio.utn.edu.ec/bitstream/123456789/2658/2/04 IT 006 TESIS.pdf

Cervantes Meneses LG, Inga SC. Elaboración De Miel Del Cabuya Y Estudio De Prefactibilidad De Una Planta En El Distrito De Huanca Huanca, Provincia De Angaraes, Departamento De Huancavelica. 2015;185. Available from: http://cybertesis.unmsm.edu.pe/bitstream/cybertesis/4227/1/Cervantes_ml.pdf

Villacrés P. “CUANTIFICACIÓN DE LA BIOMASA RESIDUAL Y CARACTERIZACIÓN DEL CHAGUARMISHQUI” [Internet]. UNIVERSIDAD TÉCNICA DE AMBATO; 2018 [cited 2021 Nov 7]. Available from: https://repositorio.uta.edu.ec/bitstream/123456789/28507/1/Tesis-205 Ingeniería Agronómica -CD 596.pdf

Criollo Figueroa OH. Establecimiento de un protocolo para la propagación masiva in vitro DE CABUYA AZUL (Agave americana L.) Y CABUYA BLANCA (Furcraea andina Trel.) [Internet]. SANGOLQUÍ / ESPE / 2011; 2011 [cited 2020 Feb 21]. Available from: http://repositorio.espe.edu.ec/xmlui/handle/21000/4656

Yañez MB. Facultad de Ingeniería Facultad de Ingeniería. Ucv. 2017;358.

Hora L. La mandarina, fruta de mayor producción. [Internet]. 2013 [cited 2021 Jan 7]. Available from: https://lahora.com.ec/noticia/1101372417/la-mandarina-fruta-de-mayor-

Rincón AM, Vásquez A, Padilla M, C F. Composicion quimica y compuestos bioactivos de las harinas de cascaras de naranja (citrus sinensis), mandarina (citrus reticulata) y toronja (citrus paradisi) cultivadas en Venezuela. Arch Latinoam Nutr [Internet]. 2005 [cited 2022 Jan 7];55(3):305–10. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222005000300013&lng=es&nrm=iso&tlng=es

Nevárez MB. "Estudio comparativo de la calidad físico-química y cromatográfica del fruto de la mandarina (citrus nobilis lour) [Internet]. [Quevedo]: Universidad Técnica Estatal de Quevedo Facultad de Ciencias Pecuarias Carrera de Ingeniería en Alimentos; 2013 [cited 2022 Jan 7]. Available from: https://repositorio.uteq.edu.ec/bitstream/43000/239/1/T-UTEQ-0004.pdf

Castro K. Elaboración de nanopartículas de plata vía síntesis y compuestos orgánicos de púnica granatum y catálisis bacteriana de Escherichia coli, Staphylococcus aureus y Aspergillus niger [Internet]. Universidad de Guayaquil. Facultad de Ingeniería Química.; 2018. Available from: http://repositorio.ug.edu.ec/bitstream/redug/33323/1/401-1332%2520-%2520Elaborac%2520nanoparticulas%2520plata%2520via%2520sintesis%2520y%2520compuest%25

Logroño M. Desarrollo de una membrana a base de fibra de cabuya (Furcraea andina) recubierta con nanopartículas de plata y evaluación de su actividad antimicrobiana frente a Staphylococcus aureus y pyogenes [Internet]. Universidad Técnica de Ambato; 2022. Available from: https://repositorio.uta.edu.ec/handle/123456789/34202

Chouhan S, Guleria S. Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mater Sci Energy Technol [Internet]. 2020;3:536–44. Available from: doi: 10.1016/j.mset.2020.05.004

Lim JK, Liu T, Jeong J, Shin H, Jang HJ, Cho S-P, et al. In situ syntheses of silver nanoparticles inside silver citrate nanorods via catalytic nanoconfinement effect. Colloids Surfaces A Physicochem Eng Asp [Internet]. 2020 Nov 20 [cited 2020 Sep 1];605:125343. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927775720309365

Productos | JEOL Ltda. Microscopio electrónico de barrido InTouchScopeTM JSM-IT100 [Internet]. [cited 2022 Jan 8]. Available from: https://www.jeol.co.jp/en/products/detail/JSM-IT100.html

Espectrofotómetros - FT/IR Jasco FTIR-4000 [Internet]. [cited 2022 Jan 8]. Available from: https://www.biriden.com/es/espectrofotometros/ftir-4000

Chouhan S, Guleria S. Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mater Sci Energy Technol [Internet]. 2020 [cited 2020 Sep 2];3:536–44. Available from: https://doi.org/10.1016/j.mset.2020.05.004

Kambale EK, Nkanga CI, Mutonkole BPI, Bapolisi AM, Tassa DO, Liesse JMI, et al. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon [Internet]. 2020 Aug 1 [cited 2020 Sep 2];6(8). Available from: https://doi.org/10.1016/j.heliyon.2020.e04493

Al. NH et. Green mode synthesis of silver nanoparticles using Vitis vinifera’s tannin and screening its antimicrobial activity / apoptotic potential versus cancer cells. Mater Today Commun [Internet]. 2020;25(101511). Available from: doi: 10.1016/j.mtcomm.2020.101511.

Katta VKM, Dubey RS. Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater Today Proc [Internet]. 2020 Mar [cited 2020 Sep 2]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320315996

A JKL. “In situ syntheses of silver nanoparticles inside silver citrate nanorods via catalytic nanoconfinement effect. Colloids Surfaces A Physicochem Eng Asp. 2020;605:125343.

Kumar Panda M, Kumar Dhal N, Kumar M, Manjari Mishra P, Kumar Behera R. Green synthesis of silver nanoparticles and its potential effect on phytopathogens. Mater Today Proc [Internet]. 2020 Jun [cited 2020 Sep 2]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785320337494

Maity GN, Maity P, Choudhuri I, Sahoo GC, Maity N, Ghosh K, et al. Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. Int J Biol Macromol [Internet]. 2020 Nov 1 [cited 2020 Sep 3];162:1025–34. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813020336680

Sánchez M, Tutor M, Álvarez J, Facultad R, Ciencias DE. Trabajo de fin de máster módulo de Química Inorgánica e Ingeniería Química nanopartículas de plata: Preparación, caracterización y propiedades con aplicación en inocuidad de los alimentos. J Chromatogr [Internet]. 2017 [cited 2022 Jan 12];1040(2):15–7. Available from: http://e-spacio.uned.es/fez/eserv/bibliuned:master-Ciencias-CyTQ-Msanchez/Sanchez_Moreno_Minerva_TFM.pdf

Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics . J Radiat Res Appl Sci [Internet]. 2016;9(3):217–27. Available from: http://dx.doi.org/10.1016/j.jrras.2015.10.002

Mendez MA. “Síntesis y Caracterización De Nanopartículas De Plata: Efecto Sobre Colletotrichum Gloesporioides. 2009;90(17).

Tang B, Wang J, Xu S, Afrin T, Xu W, Sun L, et al. Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. J Colloid Interface Sci [Internet]. 2011;356(2):513–8. Available from: http://dx.doi.org/10.1016/j.jcis.2011.01.054

Naciones Unidas. Objetivos de desarrollo sostenible [Internet]. 2015. p. 2. Available from: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/

Kokila T, Ramesh • P S, Geetha • D. Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Appl Nanosci [Internet]. 2015 [cited 2020 Feb 21];5:911–8. Available from: https://link.springer.com/content/pdf/10.1007/s13204-015-0401-2.pdf

Liu Y, Liu Y, Liao N, Cui F, Park M, Kim H-Y. Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles. Int J Biol Macromol [Internet]. 2015 Aug 1 [cited 2020 Feb 21];79:638–43. Available from: https://www.sciencedirect.com/science/article/pii/S0141813015003992

K A, J V. Green Synthesis and Characterization of Silver Nanoparticles Using Vitex negundo (Karu Nochchi) Leaf Extract and its Antibacterial Activity. Med Chem (Los Angeles). 2017;07(07).

Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. In: Procedia Chemistry [Internet]. 2009 [cited 2020 Feb 21]. p. 1560–6. Available from: https://reader.elsevier.com/reader/sd/pii/S1876619609003933?token=A3F2B1C650047F52C7CC3CBDDB690B0909E10AD9A7A9A2D0588024BB2B20AC0ED51E2353EF0D56801E0BED6836133A45

Ledezma A, Romero J, Hernández M, Moggio I, Arias E, Padrón G, et al. Síntesis biomimética de nanopartículas de plata utilizando extracto acuoso de nopal (Opuntia sp.) y su electrohilado polimérico. Superf y Vacío [Internet]. 2014 [cited 2020 Feb 21];27(4):133–40. Available from: http://www.scielo.org.mx/pdf/sv/v27n4/1665-3521-sv-27-04-00133.pdf

Tan Y, Dai X, Li Y, Zhu D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J Mater Chem [Internet]. 2003 Apr 16 [cited 2022 Jan 5];13(5):1069–75. Available from: https://pubs.rsc.org/en/content/articlehtml/2003/jm/b211386d

Bjorge D, Daels N, De Vrieze S, Dejans P, Van Camp T, Audenaert W, et al. Performance assessment of electrospun nanofibers for filter applications. Desalination. 2009 Dec 25;249(3):942–8.

Ortega D. Aplicaciones biomédicas de las nanopartículas de plata [Internet]. FACULTAD DE FARMACIA UNIVERSIDAD COMPLUTENSE TRABAJO; 2020 [cited 2021 Dec 27]. Available from: http://147.96.70.122/Web/TFG/TFG/Memoria/DAVID ORTEGO CASADO.pdf

Mathur P, S J, S R, NK J. Pharmaceutical aspects of silver nanoparticles. Artif Cells. Nanomedicine Biotechnol. 2018;46(sup1):115–26.

Sahuquillo Arce JM, Iranzo Tatay A, Llácer Luna M, Sanchis Boix Y, Guitán Deltell J, González Barberá E, et al. Estudio in vitro de las propiedades antimicrobianas de una espuma de poliuretano que libera iones de plata - Dialnet. Cirugía española Organo Of la Asoc Española Cir [Internet]. 2011 [cited 2020 Feb 21];89(8):532–8. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=3727131

Travieso Novelles M, Rubio Ortega A, Pino Pérez O. Las nanopartículas a partir de plantas como base para el diseño de nuevos antimicrobianos. Rev Cuba Farm [Internet]. 2019 [cited 2020 Feb 21];51(4). Available from: http://revfarmacia.sld.cu/index.php/far/article/view/263/178

Descargas

Publicado

2023-04-13

Cómo citar

Logroño Veloz, M. A., Asubadin Espin, S. A., Espín Logroño, A. S., & Espín Logroño, A. F. (2023). Obtención de nanopartículas de plata soportadas en membrana de cabuya (Furcraea andina) y su acción antimicrobiana frente a Staphylococcus aureus. LA CIENCIA AL SERVICIO DE LA SALUD Y NUTRICIÓN, 14(1), B_25–40. https://doi.org/10.47187/cssn.Vol14.Iss1.210

Número

Sección

Artículos originales