Sustancias nocivas de envases de alimentos y su efecto en la salud de los consumidores

Autores/as

  • Mayra Alexandra Logroño Veloz Carrera de Nutrición y Dietética, Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador https://orcid.org/0000-0003-4792-6065
  • Andrea Samantha Espín Logroño Carrera de Física, Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador https://orcid.org/0000-0002-9993-2267
  • Jailene Yaritza García Castillo Carrera de Mecatrónica, Facultad de Ciencia y tecnología, Universidad Politécnica Salesiana, Cuenca, Ecuador https://orcid.org/0000-0002-8005-8805
  • Alexis Fernando Espín Logroño Carrera de Psicología, Facultad Ciencias Sociales, Educación y Humanidades, Universidad Técnica Particular de Loja, Loja, Ecuador https://orcid.org/0000-0002-3421-3480

DOI:

https://doi.org/10.47187/cssn.Vol13.Iss2.199

Palabras clave:

Plastificante, neurotóxico, disruptor hormonal

Resumen

ntroducción: La industria de los envases durante las últimas décadas ha generado un importante desarrollo en la conservación de alimentos, mejorando la productividad y comercialización; sin embargo, los alimentos procesados y envasados constituyen la principal fuente de migración de plastificantes y otros elementos nocivos a los alimentos y al medio ambiente. Objetivo: identificar algunas sustancias nocivas de envases de alimentos y su efecto en la salud de los consumidores, además buscar alternativas de envases que mitiguen los riesgos identificados. Metodología: Revisión no sistemática de artículos científicos en las bases de datos como PudMed, ScienceDirect, Elsevier, Google académico, con estudios elegibles del tema. Resultados: El elemento nocivo identificado en envases de metal y tetra pack es el aluminio, el cual migra a los alimentos según el pH y la temperatura, los problemas se asocian a neurotoxicidad; con respecto al plástico los aditivos como el BPA y ftalatos son considerados como disruptores hormonales fácilmente acumulados en tejidos adiposos y a nivel hormonal en especial gónadas masculinas; los más afectados son los neonatos y niños. Existen evidencias sobre alternativas de fabricación de envases biodegradables sin el uso de aditivos plastificantes. Conclusión: Priorizar en la aplicación de programas de salud ambiental dedicados a la concientización del no uso de materiales que causan daño a la salud y la fomentación de regulaciones legislativas para que la industria elabore otros materiales biodegradables, renovables a favor del ambiente y la salud de las personas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Rodríguez Sauceda R, Rojo-Martínez G, Martínez Ruiz R, Piña-Ruiz HH, Ramírez-Valverde B, Vaquera Huerta H, et al. Envases Inteligentes Para La Conservación De Alimentos Smart Packaging for Food Preservation. Ra Ximhai [Internet]. 2014;10(10):151–73. Available from: http://www.redalyc.org/pdf/461/46132135012.pdf

Mata A, Carlos G. Reciclaje de fibra de vidrio. Academia [Internet]. 2010;12. Available from: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=LIFE07_ENV_E_000802_LAYMAN_ES.pdf

Carranza B. Fabricación de envases de hojalata como empaqueprimario a través de un análisis de riesgo para la inocuidad y defensa alimentaria. [Internet]. Trabjo de titulación. Universidad de San Carlos de Guatemala; 2019. Available from: http://emecanica.ingenieria.usac.edu.gt/sitio/wp-content/subidas/6ARTÍCULO-III-INDESA-SIE.pdf

Delgado F. Desempeño y funcionalidad de la hojalata colaminada en un medio simulado de alimentos a través del tiempo. 2003;8–19. Available from: http://cybertesis.uach.cl/tesis/uach/2003/fad352d/pdf/fad352d.pdf

Turrado J, Dávalos MF, Fuentes FJ, Saucedo AR. Envases de Cartón para Líquidos como Fuente de Fibra Secundaria. Inf Tecnol. 2012;23(3):59–66.

Contreras Camacho ME. Empaques activos para conservación de alimentos en base de formulaciones poliméricas. CienciaCierta [Internet]. 2018;(56):12. Available from: http://www.cienciacierta.uadec.mx/articulos/cc56/Empaques.pdf

Beltifa A, Feriani A, Machreki M, Ghorbel A, Ghazouani L, Di Bella G, et al. Plasticizers and bisphenol A, in packaged foods sold in the Tunisian markets: study of their acute in vivo toxicity and their environmental fate. Environ Sci Pollut Res. 2017;24(28):22382–92.

Alicia I. Varsavsky. ¿Es Tóxico El Aluminio? Fund Nexus [Internet]. 2002;(1123):28–32. Available from: http://nexus.org.ar/trabajos publicados/Es tóxico el aluminio - 2002.pdf

John T, Peter G, Todd S. Enfermedad Ósea. 2015;2015.

Nie J. Exposure to Aluminum in Daily Life and Alzheimer’s Disease. Adv Exp Med Biol [Internet]. 2018;1091:99–111. Available from: https://pubmed.ncbi.nlm.nih.gov/30315451/

Vázquez T, Montoya H. Riesgos a la salud por presencia del aluminio en el agua potable. Concienc Tecnológica [Internet]. 2004;(25). Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=6483666

Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, et al. Potential mechanisms of bisphenol a (BPA) contributing to human disease. Int J Mol Sci. 2020;21(16):1–22.

Muts EJ, Muts RA, Muts M. Bisfenol-A: een update. Tandartspraktijk [Internet]. 2013;34(1):18–9. Available from: https://link.springer.com/article/10.1007/s12496-013-0006-4

Cimmino, I.; Oriente, F.; D’Esposito, V.; Liguoro, D.; Liguoro, P.; Ambrosio, M.R.; Cabaro, S.; D’Andrea, F.; Beguinot, F.; Formisano P. et al. Low Dose Bisphenol-A Regulates Inflammatory Cytokines through GPR30 in Mammary Adipose Cells. J Mol Endocrino. 2019;63:273–83.

Esposito RVVD, Cimmino FAI. Bisphenol A environmental exposure and the detrimental effects on human metabolic health : is it necessary to revise the risk assessment in vulnerable population ? J Endocrinol Invest. 2015;1–5.

Andra, S.S.; Austin, C.; Yang, J.; Patel, D.; Arora M. Recent advances in simultaneous analysis of bisphenol A and its conjugates in human matrices: Exposure biomarker perspectives. Sci Total Env. 2016;572(770–781).

Rotondo, E.; Chiarelli F. Endocrine-Disrupting Chemicals and Insulin Resistance in Children. Biomedicines. 2020;8:137.

Pereira-Fernandes A, Demaegdt H, Vandermeiren K, Hectors TL, Jorens PG, Blust R VC. Evaluation of a screening system for obesogenic compounds: screening of endocrine dis- rupting compounds and evaluation of the PPAR dependency of the effect. PLoS One [Internet]. 2013; Available from: 10.1371/journal.pone.0077481

Kang JH, Kondo F KY. Human exposure to bis- phenol A. Toxicology. 2006;226(2):79.

Prevention UD of H and HSC for DC and. Fourth national report on human exposure to environmental chemicals. Atlanta, Georgia; 2013.

Zota AR, Calafat AM WT. Temporal trends in phthalate exposures: findings from the national health and nutrition examination survey. Env Heal Perspect. 2014;122:235–41.

(USEPA) USEPA. Phthalates action plan summary. http://www.epa.gov/oppt/existingchemicals/pubs/ actionplans/phthalates.html.

Serrano SE, Braun J, Trasande L, Dills R, Sathyanarayana S. Phthalates and diet: A review of the food monitoring and epidemiology data. Environ Heal A Glob Access Sci Source. 2014;13(1).

Sioen I, Fierens T, Van Holderbeke M, Geerts L, Bellemans M, De Maeyer M, Servaes K, Vanermen G, Boon PE DHS. Phthalates dietary exposure and food sources for Belgian preschool children and adults. Env Int. 2012;48:102–8.

Bustamante P. Necesidades regulatorias sobre los efectos de los plastificantes en la población infantil. Salud Publica Mex. 2007;49:72–5.

Swan HS, Main KM, Liu F, Stewart SL, Kruse R C et a. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Env Heal Perspect. 2005;113:1056–61.

Bustamante Montes LP, Lizama Soberanis B, Vázquez-Moreno F, García Fábila M, Corea-Telléz K O-FG y BV. Exposición Infantil a plastificantes potencialmente tóxicos en productos de uso oral. Salud Publica México. 2004;(46):501–8.

Xu H, Sheng J, Wu X, Zhan K, Tao S, Wen X, et al. Moderating effects of plastic packaged food on association of urinary phthalate metabolites with emotional symptoms in Chinese adolescents. Ecotoxicol Environ Saf [Internet]. 2021;216:112171. Available from: https://doi.org/10.1016/j.ecoenv.2021.112171

Mateescu AL, Dimov TV, Grumezescu AM, Gestal MC CM. Nanostructured bioactive polymers used in food-packaging. Curr Pharm Biotechnol [Internet]. 2015;16:121–7. Available from: https://www.ingentaconnect.com/content/ben/cpb/2015/00000016/00000002/art00005

Domenek S, Feuilloley P, Gratraud J, Morel MH GS. Biodegradability of wheat gluten based bioplastics. Chemosphere [Internet]. 2004;54:551. Available from: https://pubmed.ncbi.nlm.nih.gov/14581057/

Jin T, Zhang H. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. J Food Sci [Internet]. 2008;73(3). Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1750-3841.2008.00681.x

Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C.; Rubin, B.S.; Soto AM. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30:75.

Organización Panamericana de la Salud. Los niños, los mas vulnerables [Internet]. 2003. Available from: www.cepis.ops-oms.org/eswww/proyecto/repidisc/publica/ repindex/Repi072/

Zurita J. La nanotecnología en la producción y conservación de alimentos. 2015;1:184–207. Available from: http://revalnutricion.sld.cu/index.php/rcan/article/view/93/92

Descargas

Publicado

2022-12-18

Cómo citar

Logroño Veloz, M. A., Espín Logroño, A. S., García Castillo, J. Y., & Espín Logroño, A. F. (2022). Sustancias nocivas de envases de alimentos y su efecto en la salud de los consumidores. LA CIENCIA AL SERVICIO DE LA SALUD Y NUTRICIÓN, 13(2), C_6–12. https://doi.org/10.47187/cssn.Vol13.Iss2.199

Número

Sección

Revisiones bibliográficas