In silico design of phage-derived antimicrobial peptides for the eradication of Enterococcus faecium

Authors

  • Igor Eduardo Astudillo Skliarova Carreras de Nutrición y Dietética, y Medicina. Escuela Superior Politécnica de Chimborazo, Riobamba, 060101, Ecuador.

DOI:

https://doi.org/10.47187/cssn.Vol15.Iss1.276

Keywords:

Phage therapy, antimicrobial peptides (AMPs), Enterococcus faecium, biofilm eradication, , antimicrobial resistance

Abstract

Introduction: Enterococcus faecium has raised growing concern due to its association with nosocomial infections and antibiotic resistance, being responsible for most vancomycin-resistant enterococci (VRE) infections and forming biofilms that confer resistance to antibiotics such as linezolid and tigecycline. Materials and Methods: Peptides derived from phages vB_Efm_LG62 and vB_EfKS5 were designed for E. faecium. The AMP Scanner vr.2 server was used to identify candidates for antimicrobial peptides (AMPs), and then the servers CellPPD, dPABB, and ToxinPred were used to evaluate penetration into bacterial cells, eradication of biofilms, and toxicity, respectively. Results: Proteins with antibacterial activity were identified as a basis for the identification of AMPs, which showed good cell penetration, ability to eradicate biofilms, and low toxicity. Discussion: AMPs derived from phages feature HNH domains and ATP-dependent metalloproteases, as well as putative activities of sigma factor and NAMLAA associated with bacterial lysis or phage replication. Conclusion: The in silico design of phage peptides offers a promising solution for treating E. faecium infections and other bacteria, highlighting the potential of AMPs to advance antimicrobial therapy in the face of antibiotic resistance.

Downloads

Download data is not yet available.

References

Zhou X, Willems RJL, Friedrich AW, Rossen JWA, Bathoorn E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control. 2020;9(1):130.

Willems RJ, van Schaik W. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol. 2009;4(9):1125-35.

Sheikh AF, Hamidi H, Shahin M, Shahmohammadi S. The prevalence of phenotypic and genotypic glycopeptides resistance among clinical isolates of enterococci in Ahvaz, southwestern Iran. Gene Rep. 2019;16:100415.

Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol. 2023;13:1159798.

O'Toole RF, Leong KWC, Cumming V, Van Hal SJ. Vancomycin-resistant Enterococcus faecium and the emergence of new sequence types associated with hospital infection. Res Microbiol. 2023;174(4):104046.

Li W, Yang Z, Hu J, Wang B, Rong H, Li Z, Sun Y, Wang Y, Zhang X, Wang M, Xu H. Evaluation of culturable 'last-resort' antibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. J Hazard Mater. 2022;438:129477.

Piezzi V, Gasser M, Atkinson A, Kronenberg A, Vuichard-Gysin D, Harbarth S, Marschall J, Buetti N. Increasing proportion of vancomycin-resistance among enterococcal bacteraemias in Switzerland: a 6-year nation-wide surveillance, 2013 to 2018. Euro Surveill. 2020;25(35):1900575.

Yang J-x, Liu C-w, Wu F-w, Zhu L, Liang G-w. Molecular characterization and biofilm formation ability of Enterococcus faecium and Enterococcus faecalis bloodstream isolates from a Chinese tertiary hospital in Beijing. Int Microbiol. 2023;27:929-39.

O'neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist. 2014;20:1-16.

Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun. 2020;6(1):100.

Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011;1(2):111-4.

Ogungbe BA, Awoniyi SO, Bolarinde BF, Awotimiro OE. Progress of phage therapy research as an alternative to antibiotics: Current status, challenges, and the future of phage therapeutics. Journal of Medicine, Surgery, and Public Health. 2024;2:100042.

Du Toit A. Viral infection: The language of phages. Nat. Rev. Microbiol. 2017;15(3):134-135.

Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses. 2022;14(9).

Blanco-Picazo P, Morales-Cortes S, Ramos-Barbero MD, García-Aljaro C, Rodríguez-Rubio L, Muniesa M. Dominance of phage particles carrying antibiotic resistance genes in the viromes of retail food sources. ISME J. 2023;17(2):195-203.

Zhou S, Liu Z, Song J, Chen Y. Disarm The Bacteria: What Temperate Phages Can Do. Curr. Issues Mol. Biol. 2023;45(2):1149-67.

Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology. 2015;479-480:310-30.

Yang H, Ma Y, Wang Y, Yang H, Shen W, Chen X. Transcription regulation mechanisms of bacteriophages: recent advances and future prospects. Bioeng. 2014;5(5):300-4.

Gruffat H, Marchione R, Manet E. Herpesvirus Late Gene Expression: A Viral-Specific Pre-initiation Complex Is Key. Front Microbiol. 2016;7 :869.

Nandi A, Yadav R, Singh A. Phage derived lytic peptides, a secret weapon against Acinetobacter baumannii — An in silico approach. Front. Med. 2022;9: 1047752.

Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, Giulianotti MA, Apidianakis Y, Bradfute S, Ferguson AL, Cherkasov A, Saleem MN, Pinilla C, Fuente-Nunez C, Lazaridis T, Dai T, Houghten RA, Hancock REW, Tegos GP. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020;20(9):e216-e30.

Mikut R, Ruden S, Reischl M, Breitling F, Volkmer R, Hilpert K. Improving short antimicrobial peptides despite elusive rules for activity. Biochim Biophys Acta. 2016;1858(5):1024-33.

Wishart DS, Han S, Saha S, Oler E, Peters H, Grant JR, Stothard P, Gautam V. PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res. 2023;51(W1):W443-w50.

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16-21.

Veltri D, Kamath U, Shehu A. Deep learning improves antimicrobial peptide recognition. Bioinformatics. 2018;34(16):2740-7.

Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A, Open Source Drug Discovery (OSDD), Raghava GPS. In silico approaches for designing highly effective cell penetrating peptides. J. Transl. Med. 2013;11(1):74.

Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022;20(10):621-35.

Sharma A, Gupta P, Kumar R, Bhardwaj A. dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm Peptides. Sci Rep. 2016;6:21839.

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. Peptide Toxicity Prediction. Methods Mol Biol. 2015:1268:143-57..

Qu Q, Chen T, He P, Geng H, Zeng P, Luan G. Isolation and characterization of a novel lytic bacteriophage vB_Efm_LG62 infecting Enterococcus faecium. Virus Genes. 2023;59(5):763-74.

El-Telbany M, Lin CY, Abdelaziz MN, Maung AT, El-Shibiny A, Mohammadi TN, Zayda M, Wang C, Lwin SZC, Zhao J, Masuda Y, Honjoh K-I, Miyamoto T, El H. Potential application of phage vB_EfKS5 to control Enterococcus faecalis and its biofilm in food. AMB Express. 2023;13(1):130.

Xuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, Chen Z-S, Yang H, Sun L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 2023;68:100954.

Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare (Basel). 2023;11(13):1946.

Jadimurthy R, Mayegowda SB, Nayak SC, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnol Rep (Amst). 2022;34:e00728.

Zhang L, Xu D, Huang Y, Zhu X, Rui M, Wan T, Zheng X, Shen Y, Chen X, Ma K, Gong Y. Structural and functional characterization of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease. Sci Rep. 2017;7(1):42542.

Ronayne EA, Wan YC, Boudreau BA, Landick R, Cox MM. P1 Ref Endonuclease: A Molecular Mechanism for Phage-Enhanced Antibiotic Lethality. PLoS Genet. 2016;12(1):e1005797.

Brok-Volchanskaya VS, Kadyrov FA, Sivogrivov DE, Kolosov PM, Sokolov AS, Shlyapnikov MG, Kryukov VM, Granovsky IE. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage. Nucleic Acids Res. 2008;36(6):2094-105.

Feklístov A, Sharon BD, Darst SA, Gross CA. Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol. 2014;68:357-76.

Berkvens A, Chauhan P, Bruggeman FJ. Integrative biology of persister cell formation: molecular circuitry, phenotypic diversification and fitness effects. J R Soc Interface. 2022;19(194):20220129.

Maffei E, Woischnig A-K, Burkolter MR, Heyer Y, Humolli D, Thürkauf N, Bock T, Schmidt A, Manfredi P, Egli A, Khanna N, Jenal U, Harms A. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat Commun. 2024;15(1):175.

Tsourkas PK. Paenibacillus larvae bacteriophages: obscure past, promising future. Microb Genom. 2020;6(2):e000329.

Lopez-Arvizu A, Rocha-Mendoza D, Ponce-Alquicira E, García-Cano I. Characterization of antibacterial activity of a N-acetylmuramoyl-L-alanine amidase produced by Latilactobacillus sakei isolated from salami. World J Microbiol Biotechnol. 2021;37(4):65.

Romero P, López R, García E. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J Bacteriol. 2004;186(24):8229-39.

Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7(10):1147-71.

Fischetti VA. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol. 2010;300(6):357-62.

Kocot AM, Briers Y, Plotka M. Phages and engineered lysins as an effective tool to combat Gram-negative foodborne pathogens. Compr Rev Food Sci Food Saf. 2023;22(3):2235-66.

Liu Q, Wang X, Qin J, Cheng S, Yeo WS, He L, Ma X, Liu X, Li M, Bae T. The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol. 2017;7:181.

Akiyama Y. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli. Proc Natl Acad Sci U.S.A. 2002;99(12):8066-71.

Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020;11:582779.

Abebe GM. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int J Microbiol. 2020;2020:1705814.

Wu X, Wang Z, Li X, Fan Y, He G, Wan Y, Yu C, Tang J, Li M, Zhang X, Zhang H, Xiang R, Pan Y, Liu Y, Liu L Yang L. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrob Agents Chemother. 2014;58(9):5342-9.

Sacan A, Ekins S, Kortagere S. Applications and limitations of in silico models in drug discovery. Methods Mol Biol. 2012;910:87-124.

Le V, Crouser ED. Chapter 5 - Sarcoidosis Models: Past, Present, and Future. In: Baughman RP, Valeyre D, editors. Sarcoidosis. Philadelphia: Elsevier; 2019. p. 67-73.

Published

2024-07-23

How to Cite

Astudillo Skliarova, I. E. (2024). In silico design of phage-derived antimicrobial peptides for the eradication of Enterococcus faecium. LA CIENCIA AL SERVICIO DE LA SALUD Y NUTRICIÓN, 15(1), B_103–112. https://doi.org/10.47187/cssn.Vol15.Iss1.276

Issue

Section

Artículos originales