Recommendation of bioactive components according to genetic variants in obesity and its comorbidities
DOI:
https://doi.org/10.47187/cssn.Vol14.Iss1.223Keywords:
Bioactive compounds, polymorphisms, SNP, diet, gene, obesityAbstract
Introduction: The SNPs in genes involved in the absorption, availability, metabolism and excretion of bioactive components contribute to the interindividual variability of their physiological mechanisms that can intervene in the health and disease of the patient. Aim: Work on a chart of recommendations on the consumption of dietary bioactives of potential interest in the control of obesity and its comorbidities. Methods: The article was based on a bibliographic search using two search equations that allowed the identification of relevant criteria on the influence of polymorphisms in the dietary recommendations of bioactive components. Results: The bibliographic search allowed us to find 25 interactions of 8 types of bioactives/extracts with 20 single nucleotide polymorphisms (SNPs) in 14 genes. These interactions were recorded in a matrix to facilitate understanding of the influence of genetic variants on the response to bioactives in obesity. Discussion: Among the interactions identified, the protective role of quercetin in the apolipoprotein E genotype against cardiovascular diseases, the relationship between the intake of plant sterols, the haplotypes of the NPC1L1 gene and the decrease in LDL cholesterol, as well as the response to Bofutsushoan extract in the reduction of abdominal fat. Conclusions: Although the studies on the different interactions are limited, the integration of the gene expression study as part of the evaluation of the nutritional status of the patients could be useful for the personalization of the recommendations provided during the consultation by the patients. health and nutrition professionals.
Downloads
References
De Lorenzo A, Soldati L, Sarlo F, Calvani M, Di Lorenzo N, Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World J Gastroenterol. 14 de enero de 2016;22(2):681-703.
Obesidad y sobrepeso [Internet]. [citado 5 de mayo de 2021]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight
González Jiménez E. Genes y obesidad: una relación de causa-consecuencia. Endocrinol Nutr. 1 de noviembre de 2011;58(9):492-6.
Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 25 de marzo de 2009;9:88.
Martínez-Navarrete N, Camacho Vidal M del M, Martínez Lahuerta JJ. Los compuestos bioactivos de las frutas y sus efectos en la salud. Rev Esp Nutr Hum Diet. 1 de mayo de 2008;12(2):64-8.
Gen | NHGRI [Internet]. Genome.gov. [citado 2 de julio de 2021]. Disponible en: https://www.genome.gov/es/genetics-glossary/Gen
Torrades S. Diversidad del genoma humano: los polimorfismos. Offarm. 1 de mayo de 2002;21(5):122-5.
Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr. 21 de agosto de 2018;38:69-96.
de Roos B. Personalised nutrition: ready for practice? Proc Nutr Soc. febrero de 2013;72(1):48-52.
Research C for DE and. Food-Effect Bioavailability and Fed Bioequivalence Studies [Internet]. U.S. Food and Drug Administration. 2019 [citado 18 de febrero de 2020]. Disponible en: http://www.fda.gov/regulatory-information/search-fda-guidance-documents/food-effect-bioavailability-and-fed-bioequivalence-studies
Enterocito. En: Wikipedia, la enciclopedia libre [Internet]. 2021 [citado 5 de julio de 2021]. Disponible en: https://es.wikipedia.org/w/index.php?title=Enterocito&oldid=132995004
Milenkovic D, Morand C, Cassidy A, Konic-Ristic A, Tomás-Barberán F, Ordovas JM, et al. Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved. Adv Nutr. 6 de julio de 2017;8(4):558-70.
Calderón Abad PC. Diseño de un test nutrigenético para predecir la respuesta a bioactivos dietéticos de potencial interés en el control de la obesidad y sus comorbilidades. 19 de julio de 2021 [citado 3 de octubre de 2022]; Disponible en: http://dspace.uib.es/xmlui/handle/11201/158329
rs1801282 RefSNP Report - dbSNP - NCBI [Internet]. [citado 24 de junio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/snp/rs1801282
rs1801282 related genes - GeneCards Search Results [Internet]. [citado 24 de junio de 2021]. Disponible en: https://www.genecards.org/Search/Keyword?queryString=rs1801282
SNPedia [Internet]. [citado 24 de junio de 2021]. Disponible en: https://www.snpedia.com/index.php/
FoodData Central [Internet]. [citado 25 de mayo de 2020]. Disponible en: https://fdc.nal.usda.gov/fdc-app.html#/food-details/381183/nutrients
Gottau G. Alimentos ricos en esteroles para reducir el colesterol en el organismo [Internet]. Vitónica. 2012 [citado 13 de mayo de 2021]. Disponible en: https://www.vitonica.com/alimentos-funcionales/alimentos-ricos-en-esteroles-para-reducir-el-colesterol-en-el-organismo
Kim M, Yoo HJ, Kim M, Ahn HY, Park J, Lee SH, et al. Associations among oxidative stress, Lp-PLA activity and arterial stiffness according to blood pressure status at a 3.5-year follow-up in subjects with prehypertension. Atherosclerosis [Internet]. 201702 [citado 14 de noviembre de 2021];257. Disponible en: http://dx.doi.org/10.1016/j.atherosclerosis.2017.01.006
Rizzi F, Conti C, Dogliotti E, Terranegra A, Salvi E, Braga D, et al. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J Transl Med [Internet]. 23 de junio de 2016 [citado 9 de junio de 2021];14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918189/
Egert S, Boesch-Saadatmandi C, Wolffram S, Rimbach G, Müller MJ. Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. J Nutr. febrero de 2010;140(2):278-84.
El estrés crónico pone tu salud en riesgo [Internet]. Mayo Clinic. [citado 7 de julio de 2021]. Disponible en: https://www.mayoclinic.org/es-es/healthy-lifestyle/stress-management/in-depth/stress/art-20046037
NPC1L1. En: Wikipedia [Internet]. 2020 [citado 7 de julio de 2021]. Disponible en: https://en.wikipedia.org/w/index.php?title=NPC1L1&oldid=992941672
Zhao HL, Houweling AH, Vanstone CA, Jew S, Trautwein EA, Duchateau GSMJE, et al. Genetic variation in ABC G5/G8 and NPC1L1 impact cholesterol response to plant sterols in hypercholesterolemic men. Lipids. diciembre de 2008;43(12):1155-64.
Miembro 8 de la subfamilia G del casete de unión de ATP ABCG8 [Homo sapiens (humano)] - Gene - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/64241
EL COLESTEROL FORMA ÁCIDOS BILIARES [Internet]. [citado 7 de julio de 2021]. Disponible en: http://www.medicina.uat.edu.mx/bioquimica/lipidos/colab.htm
Adrenoceptor beta 3 de ADRB3 [Homo sapiens (humano)] - Gen - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/155
Subunidad beta 5 de la proteína GNB5 G [Homo sapiens (humano)] - Gen - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/10681
PubChem. PPARG - peroxisome proliferator activated receptor gamma (human) [Internet]. [citado 8 de julio de 2021]. Disponible en: https://pubchem.ncbi.nlm.nih.gov/gene/PPARG/human
Park J, Bose S, Hong SW, Lee DK, Yoo JW, Lim CY, et al. Impact of GNB3-C825T, ADRB3-Trp64Arg, UCP2-3′UTR 45 bp del/ins, and PPARγ-Pro12Ala Polymorphisms on Bofutsushosan Response in Obese Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. J Med Food. 1 de mayo de 2014;17(5):558-70.
UCP2 uncoupling protein 2 [Homo sapiens (human)] - Gene - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/7351
Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y, et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr. enero de 2009;89(1):45-50.
PubChem. TRPV1 - transient receptor potential cation channel subfamily V member 1 (human) [Internet]. [citado 8 de julio de 2021]. Disponible en: https://pubchem.ncbi.nlm.nih.gov/gene/TRPV1/human
ADRA2B adrenoceptor alpha 2B [Homo sapiens (human)] - Gene - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/151
Receptor de adenosina A2a ADORA2A [Homo sapiens (humano)] - Gene - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/135
IL6 interleucina 6 [Homo sapiens (humano)] - Gen - NCBI [Internet]. [citado 8 de julio de 2021]. Disponible en: https://www.ncbi.nlm.nih.gov/gene/3569
Barth SW, Koch TCL, Watzl B, Dietrich H, Will F, Bub A. Moderate effects of apple juice consumption on obesity-related markers in obese men: impact of diet-gene interaction on body fat content. Eur J Nutr. octubre de 2012;51(7):841-50.
Ayala G, Emilia A. Nutrigenómica y nutrigenética. Offarm. 1 de abril de 2007;26(4):78-85.
Le Fur S, Le Stunff C, Dos Santos C, Bougnères P. The common -866 G/A polymorphism in the promoter of uncoupling protein 2 is associated with increased carbohydrate and decreased lipid oxidation in juvenile obesity. Diabetes. enero de 2004;53(1):235-9.
Renda G, Zimarino M, Antonucci I, Tatasciore A, Ruggieri B, Bucciarelli T, et al. Genetic determinants of blood pressure responses to caffeine drinking. The American Journal of Clinical Nutrition. 1 de enero de 2012;95(1):241-8.
appleTREE. Consumir 4 o 5 tazas de café al día reduce un 14% el riesgo de muerte [Internet]. Fundación Española del Corazón. [citado 4 de julio de 2021]. Disponible en: https://fundaciondelcorazon.com/prensa/notas-de-prensa/2509-consumir-4-o-5-tazas-de-cafe-dia-reduce-14-riesgo-de-muerte.html
Calvar AN. La comida del futuro. El País [Internet]. 2 de junio de 2015 [citado 12 de julio de 2021]; Disponible en: https://elpais.com/elpais/2015/06/01/eps/1433169848_895382.html
Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. febrero de 2006;47(2):296-308.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 LA CIENCIA AL SERVICIO DE LA SALUD Y NUTRICIÓN

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

