MODELO DE REGRESIÓN LOGÍSTICO EN EL PROCESO DE HABILITACIÓN PROFESIONAL

Logistic regression model in the professional qualification process

Autores/as

  • Alexander Expósito Lara https://orcid.org/0000-0001-7724-3236
  • María Teresa Díaz Armas Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.EC060155. www.espoch.edu.ec.Facultad de Salud Pública, Carrera de Medicina
  • Izaida Lis Montero López Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador.EC060155. www.espoch.edu.ec.Facultad de Salud Pública, Carrera de Medicina

DOI:

https://doi.org/10.47187/cssn.Vol16.Iss1.419

Palabras clave:

Modelo de regresión logística binaria, Prehabilitación, Habilitación

Resumen

Introducción: La educación moderna enfrenta desafíos importantes, como identificar variables que influyen en el rendimiento académico. Objetivo: Determinar variables predictivas en el proceso de habilitación profesional mediante un modelo de regresión logística binaria. Metodología: Investigación con diseño mixto de cohorte prospectivo con una muestra de 119 estudiantes de la Escuela Superior Politécnica del Chimborazo. Se aplicó un examen de Prehabilitación con 80 preguntas, considerando 70 puntos o más como variable dependiente, y una encuesta online para explorar variables independientes. El análisis de datos se realizó con IBM SPSS Statistics versión 26.0. Resultados: Solo el 6.72% de los estudiantes aprobaron el examen de Prehabilitación. La variable predictiva principal fue "Horas de estudio" (p = 0.003), indicando que se requieren 13 horas de estudio para alcanzar 70 puntos. El 96% de los estudiantes consideró útiles las capacitaciones, y el 86% aprobó el examen final de habilitación profesional. Discusión: El modelo de regresión logística binaria permitió evaluar la influencia de diversas variables en el rendimiento académico. Los resultados mostraron significancia estadística, destacando la importancia de las horas de estudio como factor clave en el desempeño estudiantil. Conclusiones: El modelo de regresión logística binaria es una herramienta eficaz para identificar y medir el impacto de variables predictivas, permitiendo diseñar estrategias de intervención para mejorar los resultados en el proceso del ejercicio de Habilitación Profesional.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Şirin YE, Şahin M. Investigation of factors affecting the achievement of university students with logistic regression analysis: School of Physical Education and Sport example. SAGE Open. 2020 Jan-Mar;1-9. doi: 10.1177/2158244020902082. Available from: https://journals.sagepub.com/home/sgo.

Prada Núñez R, Hernández Suárez C, Solano-Pinto N, Fernández-Cézar R. Predictor variables of academic success in mathematics under a binary logistic regression model. J Posit Psychol Wellbeing. 2023;7(1):551-75. Available from: http://journalppw.com.

Arias JJ, Swinton JR, Anderson K. Online vs. face-to-face: A comparison of student outcomes with random assignment. e-Journal of Business Education & Scholarship of Teaching Rev. 2018;12(2):1-23. https://eric.ed.gov/?id=EJ1193426

Piros S, Chaiyesh T. A binary logistic regression model for entrepreneurial intention: A case study of management program at Pibulsongkram Rajabhat University. J Manag Sci Pibulsongkram Rajabhat Univ. 2022 May-Aug;4(2).

Canales A, Maldonado L. Teacher quality and student achievement in Chile: Linking teachers' contribution and observable characteristics. Int J Educ Dev. 2018 May; 60:33-50. Available from: https://www.sciencedirect.com/journal/international-journal-of-educational-development.

Pérez-Obregón JM, Romero-Díaz T. Análisis del rendimiento académico mediante regresión logística y múltiple. Rev Electr Conocim Saberes Prácticas. 2018 Jul-Dec;1(2):33-42. doi: 10.30698/recsp. v1i2.10. Available from: http://recsp.org.

Calva K, Cabezas-Martínez A, Flores M, Porras H. Modelo de predicción del rendimiento académico para el curso de nivelación de la Escuela Politécnica Nacional a partir de un modelo de aprendizaje supervisado. Latin Am J Comput. 2021 Jul;8(2).

Peng CYJ, Lee KL, Ingersoll GM. An introduction to logistic regression analysis and reporting. J Educ Res. 2002;96(1):3-14. doi: 10.1080/00220670209598786.

Martínez-Pérez JR, Ferrás-Fernández Y, Bermúdez-Cordoví LL, Ortiz-Cabrera Y, Pérez-Leyva EH. Regresión logística y predicción del bajo rendimiento académico de estudiantes en la carrera Medicina. Rev Electr Dr. Zoilo E. Marinello Vidaurreta. 2020;45(4).

Selim A, Ali I, Ristevski B. University information system’s impact on academic performance: A comprehensive logistic regression analysis with principal component analysis and performance metrics. TEM J. 2024;13(2):1589-98. doi: 10.18421/TEM132-72.

Sule BO, Saporu FW. A logistic regression model of students’ academic performance in University of Maiduguri, Maiduguri, Nigeria. Math Theory Model. 2015;5(10):124. Available from: www.iiste.org.

Díaz-García A, Garcés-Delgado Y, Feliciano-García L. Estrategias de aprendizaje y rendimiento académico en el alumnado universitario. Rev Estud Investig Psicol Educ. 2023;10(1):15-37. doi: 10.17979/reipe.2023.10.1.9499.

Alkış N, Temizel TT. The impact of motivation and personality on academic performance in online and blended learning environments. Educ Technol Soc. 2018;21(3):35-47. Available from: https://www.j-ets.net/collection/published-issues/21_3.

Barrera LF, Vales JJ, Sotelo-Castillo MA, Ramos-Estrada DY, Ocaña-Zúñiga J. Variables cognitivas de los estudiantes universitarios: su relación con dedicación al estudio y rendimiento académico. Psicumex. 2020;10(1):61-74. doi: 10.36793/psicumex. v10i1.342.

Vizoso CM, Arias O. Estresores académicos percibidos por estudiantes universitarios y su relación con el burnout y el rendimiento académicos. Anu Psicol. 2016;46(2):90-7. doi: 10.1016/j.anpsic.2016.07.006.

Vera LR, Acosta DE, Palacios D, Galeano G. Estilos de aprendizaje y rendimiento académico en estudiantes de enfermería de una universidad pública de Paraguay. Nure Invest. 2019;16(102):1-7. Available from: https://www.nureinvestigacion.es/OJS/index.php/nure/article/view/1762.

Salinas-Rodríguez A, Pérez-Núñez R, Ávila-Burgos L. Modelos de regresión para variables expresadas como una proporción continua. Salud Publica Mex. 2006;48(5):395-404.

Vásquez AS. Estrategias de aprendizaje de estudiantes universitarios como predictores de su rendimiento académico. Rev Complut Educ. 2021;32(2):159-70. doi: 10.5209/rced.68203.

Živčić-Bećirević I, Smojver-Ažić S, Martinac T. Predictors of university students’ academic achievement: a prospective study. Društv Istraž. 2017;26(4):457-76. doi: 10.5559/di.26.4.01.

Trelles HJ, Alvarado HP, Montánchez ML. Estrategias y estilos de aprendizaje y su relación con el rendimiento académico en estudiantes universitarios de psicología educativa. Killkana Social. 2018;2(2):9-16. doi: 10.26871/killkana_social. v2i2.292.

Salazar I, Heredia Y. Estrategias de aprendizaje y desempeño académico en estudiantes de medicina. Educ Med. 2019;20(4):256-62. doi: 10.1016/j.edumed.2018.12.005.

Siddiquei NL, Khalid R. The relationship between personality traits, learning styles and academic performance of e-learners. Open Praxis. 2018;10(3):249-63. doi: 10.5944/openpraxis.10.3.870.

Stankovska G, Dimitrovski D, Angelkoska S, Ibraimi Z, Uka V. Emotional intelligence, test anxiety and academic stress among university students. Bulg Comp Educ Soc Conf Books. 2018; 16:157-64. Available from: https://eric.ed.gov/?id=ED586176.

Puma MI, Hurtado DR, Santos OC, Vásquez JK. Estrategias metacognitivas y rendimiento académico en estudiantes de educación de la Universidad Nacional Amazónica de Madre de Dios. Repos Rev Univ Priv Pucallpa. 2020;5(1):17-23.

Hendrie KN, Bastacini MC. Autorregulación en estudiantes universitarios: estrategias de aprendizaje, motivación y emociones. Rev Educ. 2019;44(1):327-44. doi: 10.15517/revedu. v44i1.37713.

Hernández L, Martín CI, Lorite G, Granados P. Rendimiento, motivación y satisfacción académica, ¿una relación de tres? ReiDoCrea Rev Electron Investig Doc Creat. 2018; 7:92-7. doi: 10.30827/digibug.49829.

Hidalgo-Fuentes S, Martínez-Álvarez I, Sospedra-Baeza MJ. Rendimiento académico en universitarios españoles: el papel de la personalidad y la procrastinación académica. Eur J Educ Psychol. 2021;14(1):1-13. doi: 10.32457/ejep. v14i1.1533.

Lanza D, Sánchez V. Estrategias de aprendizaje en Educación Secundaria: un estudio comparativo sobre su uso entre alumnos españoles e inmigrantes. Eur J Investig Health Psychol Educ. 2013;3(3):227-36. doi: 10.3390/ejihpe3030020.

Magulod G. Learning styles, study habits and academic performance of Filipino university students in applied science courses: implications for instruction. J Technol Sci Educ. 2019;9(2):184-98. doi: 10.3926/jotse.504.

Neroni J, Meijs C, Gijselaers HJM, Kirschner PA, de Groot RHM. Learning strategies and academic performance in distance education. Learn Individ Differ. 2019; 73:1-7. doi: 10.1016/j.lindif.2019.04.007.

Descargas

Publicado

2025-07-26

Cómo citar

Expósito Lara, A., Díaz Armas , M. T., & Montero López, I. L. (2025). MODELO DE REGRESIÓN LOGÍSTICO EN EL PROCESO DE HABILITACIÓN PROFESIONAL: Logistic regression model in the professional qualification process. LA CIENCIA AL SERVICIO DE LA SALUD Y NUTRICIÓN, 16(1), C_74–80. https://doi.org/10.47187/cssn.Vol16.Iss1.419

Número

Sección

Artículos originales

Artículos similares

1 2 3 4 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a

1 2 > >>